
585

0022-4715/01/1100-0585$19.50/0 © 2001 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 105, Nos. 3/4, November 2001 (© 2001)

Clustering in a Self-Gravitating One-Dimensional Gas
at Zero Temperature

Christophe Giraud1

1 Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, et
C.N.R.S. UMR 7599, 175, rue du Chevaleret, F-75013 Paris, France; e-mail: christophe.
giraud@ens.fr

Received April 12, 2001; revised June 15, 2001

We study a system of gravitationally interacting sticky particles. At the initial
time, we have n particles, each with mass 1/n and momentum 0, independently
spread on [0, 1] according to the uniform law. Due to the confining of the
system, all particles merge into a single cluster after a finite time. We give the
asymptotic laws of the time of the last collision and of the time of the kth colli-
sion, when n Q.. We prove also that clusters of size k appear at time
’ n−1/2(k−1). We then investigate the system at a fixed time t < 1. We show that
the biggest cluster has size of order log n, whereas a typical cluster is of finite
size.

KEY WORDS: Sticky particles; gravitational interacting; uniform law; Brownian
bridge.

1. INTRODUCTION

The dynamics of gravitationally interacting sticky particles are a model
that has been suggested by Zeldovich (11) and other authors to investigate
the formation of large scale structure in the universe, see ref. 10 for a
survey article. We focus in this paper on the one-dimensional case. Sticky
particles are particles which collide in a completely inelastic way. When
particles meet, they form a new massive particle with conservation of mass
and momentum. More precisely, when particles with mass mi and mj

collide, they merge into a single particle with mass mi+mj, which follows
the trajectory of their center of mass. It must be noticed that in the one
dimensional case, only the nearest neighboring particles can collide.
Following, (1, 4) we consider the case when these sticky particles are attracting



each other with forces proportional to the product of their masses, inde-
pendently of the interparticle distance. Rigorously, the dynamic between
collisions is governed by the Hamiltonian

H=C
i

p2
i

2mi
+c C

i ] j
mimj |xi −xj |,

where xi, mi, pi denote the location, mass and momentum of the particle i
and c is the gravitational constant. The acceleration of a particle is then
proportional to the difference between the total masses at its right and at
its left. It is to be mentioned that these dynamics give rise to global weak
solutions to the system of conservation laws

˛“tr+“x(ru)=0

“t(ru)+“x(ru2)=−cr “xF

“xxF=r

where r(x, t), u(x, t), F(x, t) are meant to represent the velocity, density
and gravitational potential at x at time t. This connection occurs when the
initial density r(., 0) is a purely singular measure supported on a finite or
countable set, see ref. 3 for further explanations.

The subject that is of interest in the study of gravitationally interacting
sticky particles is the mass distributions induced by small perturbations of
an initial homogeneous state. When a finite number of identical particles
are initially spread on the regular lattice sites xj=ja, j=1· · · n, with mass
m and momentum 0, they all merge simultaneously into a single cluster at
the characteristic time tg=1/`cr , where r=m/a, see ref. 4, Section 3.
Martin, Piasecki, Bonvin and Zotos (1, 4) and also Suidan (9) have focused
on the evolution of the system, when the initial homogeneous state is
perturbed by introducing random uncorrelated velocities to the initial
particles. More specifically, they mainly work with a system of n initial
particles located on the lattice sites xj=ja, j=1...n, with mass m and
uncorrelated velocities distributed according to the Gaussian law. They
study the statistics of the continuum limit a Q 0, while keeping r=m/a
constant. In the concluding remarks of ref. 4, they raise the question of the
evolution of a system, in which the perturbation of the initial homogeneous
state should result from the randomization of the initial locations of the
particles. This question mainly motivates the present work.

We focus thenceforth on a system of initially n gravitationally inter-
acting sticky particles with mass 1/n, momentum 0 and which are inde-
pendently spread on [0, 1] according to the uniform law. Up to the change
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of time tŒ=`c t, we can fix c=1. It should be mentioned that the evolu-
tion of the system is isomorphic to the evolution of n gravitationally inter-
acting sticky particles with unit mass and momentum 0, independently
spread at the initial time on [0, n] according to the uniform law. We shall
mainly investigate here the asymptotics of the statistics when n tends to
infinity.

We start with giving in section 2 some material needed to study the
system. In section 3 and 4, we specify the asymptotic laws of the first and
last collisions, as well as the time scale of appearance of a cluster of finite
size k. In section 5, we determine the size of scale of the biggest cluster at
a fixed time t. Some elements on the evolution of a marked particle are
presented in the last section.

2. PRELIMINARIES

2.1. Analyzing the System

We shall give in this section some key results for our analysis. We first
properly define the system. For any n \ 1, (Xn, i, i=1,..., n) shall denote n
independent random variables with uniform law on [0, 1]. We write
0 [ Xn:1 [ · · · [ Xn:n [ 1 for the ordered statistics. We consider henceforth
a system of n particles of mass 1/n spread at the initial time on the sites
Xn, i with momentum 0.The particle initially located at Xn:i should be called
the i th particle. These particles are assumed to evolve as time runs accord-
ing to the dynamics of gravitationally interacting sticky particles described
previously.

Our investigations are mainly based on an analysis made indepen-
dently by Martin and Piasecki (4) (see also ref. 1) and E et al. (3) Let us con-
sider the k particles (i+1,..., i+k). Recall that masses and momenta are
conserved during collisions and that the acceleration acting on these k par-
ticles is equal to the difference of the masses at their right and at their left.
As a consequence, if these k particles have not collide with surrounding
particles before time t, their center of mass G(i+1,..., i+k) follows the
trajectory (see for close formulaes (11) in ref. 1 and (1–19) in ref. 3)

G(i+1,..., i+k)(s)=G(i+1,..., i+k)(0)+
(n−(k+2i)) s2

2n
for any s [ t.

We shall state now the key of the analysis of the system: a necessary and
sufficient condition for the k particles (i+1,..., i+k) to merge into a single
cluster of size k at time t, is that these particles did not collide with
surrounding particles before time t and that for any partition into two
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subclusters (i+1,..., i+r) and (i+r+1,..., i+k), the centers of mass of
these subclusters cross before time t (see formula (6) in ref. 4 and also
formula (1–12) in ref. 3). In particular, the condition

G(i+1,..., i+r)(t) \ G(i+r+1,..., i+k)(t), for r=1,..., k−1. (1)

is a necessary condition for the merging of (i+1,..., i+k) into a single
cluster of size k before time t. It is also a sufficient condition for the
merging of (i+1,..., i+k) into a cluster of size at least k. Indeed, this
results from the fact that when the cluster (i− l,..., i) collide with the
cluster (i+1,..., 1+r) at time s, their trajectories cross and for t \ s

G(i− l,..., i)(t) \ G(i−l,..., i+r)(t) \ G(i+1,..., i+r)(t),

see Lemma 6 in ref. 3 (and also Lemmas 2 and 3 there) for very close
arguments. Expressing condition (1) in terms of the initial locations of the
particles gives

1
r
C
r

j=1
Xn:i+j −

1
k−r

C
k

j=r+1
Xn:i+j+

kt2

2n
\ 0, for r=1,..., k−1,

which is not easily amenable to mathematical analysis. We thus look
for (weaker) necessary and sufficient conditions which only involve
Xn:i+k −Xn:i+1. First, it follows from the inequality

Xn:i+1 −Xn:i+k [
1
r
C
r

j=1
Xn:i+j −

1
k−r

C
k

j=r+1
Xn:i+j,

that a sufficient condition for the merging of (i+1,..., i+k) into a cluster
of size at least k before time t is

Xn:i+1 −Xn:i+k+
kt2

2n
\ 0. (2)

Second, when (i+1,..., i+k) merge into a cluster of size k before time t,
the trajectory s Q G(i+1)(s) of the particle i+1 crosses the trajectory
s Q G(i+1,..., i+k)(s) before time t, which implies that G(i+1)(t) \
G(i+1,..., i+k)(t). For the same reasons, the inequality G(i+k)(t) [
G(i+1,..., i+k)(t) holds, which enables us to formulate a simplier neces-
sary condition for the merging of (i+1,..., i+k) into a single cluster of size
k before time t as

Xn:i+1 −Xn:i+k+
kt2

n
\ 0. (3)
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We next want to give necessary and sufficient conditions for the exis-
tence of a cluster of size at least k at time t. It follows from the previous
analysis that a sufficient condition is

,i ¥ {0,..., n−k} such that for r=1,..., k−1,

1
r
C
r

j=1
Xn:i+j −

1
k−r

C
k

j=r+1
Xn:i+j+

kt2

2n
\ 0, (4)

and thus it suffices that

,i ¥ {0,..., n−k} such that Xn:i+1 −Xn:i+k+
kt2

2n
\ 0. (5)

Let us give now a necessary condition. There exists a cluster of size at least
k at time t if and only if, for some time s [ t there exists a cluster of size
between k and 2k, which only occurs if there exists s [ t, k [ p [ 2k, and
i ¥ {0,..., n−p} such that for any r ¥ {1,..., n−p}, G(i+1,..., i+r)(s) \
G(i+r+1,..., i+p)(s). A necessary condition is thus

,k [ p [ 2k and i ¥ {0,..., n−p} such that for r=1,..., p−1,

1
r
C
r

j=1
Xn:i+j −

1
p−r

C
p

j=r+1
Xn:i+j+

pt2

2n
\ 0, (6)

and a fortiori

,k [ p [ 2k and i ¥ {0,..., n−p} such that Xn:i+1 −Xn:i+p+
pt2

n
\ 0. (7)

Armed of this collection of necessary or sufficient conditions, we are ready
to start our investigations, after recalling some basic features on empirical
and quantile processes.

2.2. Uniform Empirical and Quantile Processes

Our study involves some basic and some more advanced results on the
uniform quantile process. For the convenience of the reader, we recall a
few basic facts in this field. We refer to ref. 8 for a classical text-book. We
associate to the n i.i.d. random variables (Xn, i, i=1, ..., n) with uniform
law on [0, 1], the uniform empirical distribution function

Gn(t) :=
1
n

C
n

i=1
1{Xn, i [ t}
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and its left-continuous inverse G−1
n (t) :=inf{x: Gn(x) \ t}. It is easily seen

that

G−1
n (t)=Xn:i for

i−1
n

< t [
i
n
,

and G−1
n (0)=0, where Xn:i denotes the ordered statistics. The law of large

numbers implies that Gn(t) ||QnQ. t a.s. and as a consequence
G−1

n (t) ||QnQ. t a.s. Actually, if I is the identity function on [0, 1], it
follows from the central limit theorem, that the so-called uniform empirical
process un :=`n(G−1

n −I) converges in law towards a Brownian bridge,
when n tends to infinity. In analogy with the uniform empirical process, we
define the uniform quantile process as vn=`n(G−1

n −I), i.e.,

vn(t)=`n(Xn:i −t), for
i−1

n
< t [

i
n
,

and vn(0)=0. In light of the formula vn=−un(G
−1
n )+`n(Gn p G−1

n −I), it
is easily seen that the uniform quantile process converges in law towards a
Brownian bridge, when n tends to infinity. Furthermore, the present work
also relies on some more advanced properties on the ordered statistics
related to the modulus of continuity of the uniform quantile process,
cf. Section 14-7 in ref. 8.

3. LAST COLLISION

A consequence of the confining of the system is that every particles
have merged into a single cluster after a finite time. We have already recall
that when particles are initially located on the lattice sites i/n, they all
collide simultaneously at time 1. We study in this section the effect on the
last collision of a randomization of the initial location. We show that in
this case the last collision occurs between two macroscopic clusters at time
of order 1+O(1/`n).

Theorem 3.1. In the n-particles system, the last collision occurs a.s.
between two macroscopic clusters at time T l.c.

n which follows the conver-
gence in law when n Q.

`n (T l.c.
n −1) |Qlaw sup

x ¥ [0, 1]

1 1
1−x

F
1

x
b(t) dt−

1
x
F

x

0
b(t) dt2 ,

where b denotes a Brownian bridge.
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It should be noticed that the law of

sup
x ¥ [0, 1]

1 1
1−x

F
1

x
b(t) dt−

1
x
F

x

0
b(t) dt2

is not degenerated since we have the inequalities

:F 1

0
b(t) dt : [ sup

x ¥ [0, 1]

1 1
1−x

F
1

x
b(t) dt−

1
x
F

x

0
b(t) dt2 [ 2 sup

x ¥ [0, 1]
|b(t)|.

Proof of Theorem 3.1. We first focus on the time T l.c.
n of last colli-

sion. According to condition (1), the last collision occurs before time t if
and only if

for r=1,..., n−1,
1

n−r
C
n

i=r+1
Xn:i −

1
r
C
r

i=1
Xn:i [

t2

2
,

which implies

(T l.c.
n )2=2 sup

r=1,..., n−1

1 1
n−r

C
n

i=r+1
Xn:i −

1
r
C
r

i=1
Xn:i
2 .

We want to express the time of last collision in terms of the uniform quan-
tile process that has been introduced in Section 2.2. It follows from the
equalities

F
r/n

0
vn(t) dt=`n C

r

i=1

1
n

Xn:i −`n
r2

2n2

and

F
1

r/n
vn(t) dt=`n C

n

i=r+1

1
n

Xn:i −`n 11
2
−

r2

2n2
2

that

(T l.c.
n )2=1+

2

`n
sup

r=1,..., n−1

1 1
1−r/n

F
1

r/n
vn(t) dt−

n
r
F

r/n

0
vn(t) dt2 .

Recall that vn converges in law to a Brownian bridge b when n Q. (see,
e.g., ref. 8, Chap. 3). We shall prove now the convergence

`n ((T l.c.
n )2−1) |Qlaw 2 sup

x ¥ [0, 1]

1 1
1−x

F
1

x
b(t) dt−

1
x
F

x

0
b(t) dt2 when n Q.,

(8)
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from which follows the convergence given in Theorem 3.1, since (T l.c.
n )2−1

=(T l.c.
n +1)(T l.c.

n −1) and T l.c.
n Q 1 in probability.

In order to prove (8) we define for any left continuous with right limits
functions v

fn(v) := sup
r=1,..., n−1

1
1−r/n

F
1

r/n
v(t) dt−

n
r
F

r/n

0
v(t) dt

and f.(v) := sup
x ¥ [0, 1]

1
1−x

F
1

x
v(t) dt−

1
x
F

x

0
v(t) dt.

We shall prove that for any Lipschitz bounded function g,

E(g(fn(vn))) ||QnQ.
E(g(f.(b))).

By the triangle inequality

|E(g(fn(vn)))−E(g(f.(b)))|

[ |E(g(f.(vn))−g(fn(vn)))|+|E(g(f.(vn))−g(f.(b)))|. (9)

The second term tends to 0 when n Q., since g p f. is a continuous
bounded functional and vn|Qlaw b. We focus now on the first term. For
r−1
n < x [ r

n we have the inequalities

: 1
x
F

x

0
vn(t) dt−

n
r
F

r/n

0
vn(t) dt :

[ : 1
x

−
n
r
: Fx

0
|vn(t)| dt+

n
r
F

r/n

x
|vn(t)| dt

[ 1 n
r−1

−
n
r
2 F r/n

0
|vn(t)| dt+

n
r
F

r/n

(r−1)/n
|vn(t)| dt

[
1

r−1
sup

t ¥ [0, r/n]
|vn(t)|+

1
r

sup
t ¥ [(r−1)/n, r/n]

|vn(t)|

[ ˛2 sup
t ¥ [0,`n/n]

|vn(t)| for 2 [ r [`n

2 sup
t ¥ [0, 1]

|vn(t)|/`n for r \`n+1

[
2

`n
sup

t ¥ [0, 1]
|vn(t)|+2 sup

t ¥ [0,`n/n]

|vn(t)|=: Kn,
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and this upper bound remains true for r=1. For any e > 0, we can write

|E(g(fn(vn))−g(f.(vn)))|

[ |E(g(fn(vn))−g(f.(vn)); Kn [ e)|+2 ||g||. P(Kn > e)

[ Me+2 ||g||. P(Kn > e),

where ||g||.=supt ¥ R |g(t)| and M is the Lipschitz modulus of g. We take
first the limit n Q., and then eQ 0 to obtain

lim
nQ.

E(g(fn(vn))−g(f.(vn)))=0.

Substituting this result in the inequality (9) gives formula (8). The proof of
the convergence in law of T l.c.

n is complete.
Let us check now the first assertion of Theorem 3.1. The asymptotic

masses of the two last clusters are given by the abscissa x0 for which

a(x)=
1

1−x
F

1

x
b(t) dt−

1
x
F

x

0
b(t) dt

reaches its maximum. Indeed, the asymptotic masses of the two last clusters
are given by x0 and 1−x0. All that we need is to show that x0 is different
from 0 and 1 with probability 1. We can write

a(x)=
1

1−x
1F 1

0
b(t) dt−

1
x
F

x

0
b(t) dt2 .

Suppose for example that >1
0 b(t) dt is positive. Then a(1) [ 0 [ a(0). We

shall prove that with probability 1 there exists X ¥ ] 0, 1[ such that
>X
0 b(t) dt < 0, which implies in particular that a(X) > a(0) and finally that

x0 is different from 0 and 1.
The process I(x)=>x

0 b(t) dt is symmetric and adapted to the filtration
Fx=s(b(t); t [ x). Let A denotes the event

A :=3
p \ 1

0
n \ p

{I(1/n) < 0},

that belongs to the s-field

3
x > 0

Fx
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which is trivial. The probability of the event A is therefore 0 or 1. Since A is
the decreasing limit when p Q. of the events

0
n \ p

{I(1/n) < 0}

and since

P 10
n \ p

{I(1/n) < 0}2 \ P(I(1/p) < 0)=
1
2

the probability of the event A is larger than 1/2 and hence is 1. As a con-
sequence I takes negative value after 0 with probability 1.

4. FIRST AGGREGATIONS

We now turn our attention on the first aggregations. We start by
determining the scale of size of the time of appearance of a cluster of size k
in a n-particles system.

Theorem 4.1. Let k be an integer, and tn a sequence of positive
time. When n Q., the probability that there exists a cluster of size at least
k at time tn among a n-particles system tends to 0 if n1/2(k−1)tn Q 0 and
tends to 1 if n1/2(k−1)tn Q..

A notable consequence of Theorem 4.1 is the asymptotic laws of the
times Tn:j of jth collision.

Corollary 4.1. For any integer k, the k-uplet (`n Tn:1,...,`n Tn:k)
converges in law to (`e1,...,`e1+·· ·+ek), where e1,..., ek are indepen-
dent random variables with exponential law of parameter 1.

The evolution of the system at small times may be thus describe for
large n as follows. Particles start to aggregate pairwise at time £ n−1/2. At
time £ n−1/4 clusters of size 3 appear, whereas we shall wait time of order
n−1/6 to see clusters of size 4, and so on. The fact that clusters of size 3
appear before clusters of size 4 may be physically explained by the few
number (£ n1/4) of clusters at time £ n−1/4, so that the probability they
meet together is infinitesimal.

Proof of Theorem 4.1. We first give an upper bound to the proba-
bility of existence of a cluster of size at least k at time tn. Recall by condi-
tion (7), that this probability is less than the probability of the event

,k [ p [ 2k and i ¥ {0,..., n−p} such that Xn:i+1 −Xn:i+p+
pt2n
n

\ 0.
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It is known (see, e.g., Proposition 8-2-1 in ref. 8) that

(Xn:i; i=1,..., n) ’
law 1e1+·· ·+ei

Cn+1
; i=1,..., n2 ,

where (ei; i=1,..., n+1) are independent exponential variables of param-
eter 1 and Cn+1=e1+·· ·+en+1. We rexpress the previous condition in
terms of ei :

,k [ p [ 2k and i ¥ {0,..., n−p} such that ei+2+·· ·+ei+p [
Cn+1

n
pt2n.

We thus have for upper bound to the probability of existence of a cluster of
size at least k at time tn

P 1Cn+1

n
> 22+ C

2k

p=k
C
n−p

i=0
P(ei+2+·· ·+ei+p [ 2pt2n)

[ n C
2k

p=k
P(e1+·· ·+ep−1 [ 2pt2n)+P 1Cn+1

n
> 22 .

Since Cn+1/n |Qa.s. 1 according to the law of large number and

P(e1+·· ·+ep [ l)=e−l C
.

j=p

l j

j!
’
lQ 0 l

p

p!
, (10)

the probability of existence of a cluster of size at least k at time tn tends
to 0 when nt2(k−1)

n Q 0 (or in other words n1/2(k−1)tn Q 0). The first part of
Theorem 4.1 follows.

We give now a lower bound to the probability of existence of a cluster
of size at least k at time tn. Using the condition (5), one notices that the
latter is larger than the probability of the event

,i [
n−k

k
such that Xn:ki+1 −Xn:ki+k+

kt2n
2n

\ 0,

which itself is at least

P 1,i [ n−k
k
;C

k

j=2
eki+j [

kt2n
4
2−P 1Cn+1

n
[

1
2
2 .
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Since for i [ (n−k)/k the events

3 C
k

j=2
eki+j [

kt2n
4
4

are independent and identically distributed, we have

P 1,i [ n−k
k
;C

k

j=2
eki+j [

kt2n
4
2

=1−(1−P(e1+·· ·+ek−1 [ kt2n/4))[(n−k)/k],

where [x] denotes the integer part of x. If tn tends to 0 and nt2(k−1)
n Q. we

obtain with formula (10)

P 1,i [ n−k
k

, C
k

j=2
eki+j [

kt2n
4
2

=nQ. 1− exp 1 −5n−k
k
6 (kt2n/4)k−1

(k−1)!
(1+o(1))2||QnQ. 1 .

Now the law of large numbers ensures that

P 1Cn+1

n
[

1
2
2Q 0, when n Q.,

so putting pieces together we obtain the second part of Theorem 4.1.

Proof of Corollary 4.1. Let us call T (3)
n the time of appearance of

the first cluster of size at least 3. The particles j and j+1 merge into a
single cluster at time t < T (3)

n if and only if

Xn:j+1 −Xn:j [
t2

n
.

If we write dn:i for the ith smallest spacing between the Xn:j+1 and Xn:j, we
have the equalities T2

n:1=ndn:1,..., T2
n:k=ndn:k on the event {Tn:k < T (3)

n } or
equivalently on the event {ndn:k < (T (3)

n )2}. Recall the identity in law

(Xn:i; i=1,..., n) ’
law 1e1+·· ·+ei

Cn+1
; i=1,..., n2 ,

where (ei; i=1,..., n+1) are independent exponential variables of param-
eter 1 and Cn+1=e1+·· ·+en+1. The spacing dn:i has the same law as
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m[i]
n /Cn+1, where m[i]

n denotes the ith smallest variable ej. In order to
evaluate the asymptotic law of (n2dn:1,..., n2dn:k), we shall study the asymp-
totics of (nm[1]

n ,..., nm[k]
n ) since Cn+1/n Q 1 a.s. The law of (m[1]

n ,..., m[k]
n ) is

given for 0 < s1 < · · · < sk by

P(m[1]
n ¥ ds1,..., m[k]

n ¥ dsk)

=P 1 0
i1 ] · · · ] ik

{ei1 ¥ ds1,..., eik ¥ dsk} 3
i ¨ {i1,..., ik}

{ei > sk}2

= C
i1 ] · · · ] ik

P(ei1 ¥ ds1) · · ·P(eik ¥ dsk) D
i ¨ {i1,..., ik}

P(ei > sk)

=
n!

(n−k)!
e−s1 · · · e−ske−(n−k) sk ds1 · · · dsk,

where the second equality stems from the independence of the exponential
variables. We obtain the convergence

P(nm[1]
n ¥ ds1,..., nm[k]

n ¥ dsk)

=
n!

nk(n−k)!
e−s1/n · · · e−sk−1/ne−(n−k+1) sk/n ds1 · · · dsk ||QnQ. e−sk ds1 · · · dsk,

which means that

(nm[1]
n ,..., nm[k]

n ) |Qlaw (e −1,..., e −1+·· ·+e −k),

where e −1,..., e −k are independent exponential variables of parameter 1. Since
Theorem 4.1 ensures that n(T(3)

n )2 Q. a.s., and thus that ndn:k °
(T (3)

n )2 a.s., we finally obtain the convergence

(nT2
n:1,..., nT2

n:k) |Qlaw (e −1,..., e −1+·· ·+e −k).

Corollary 4.1 follows.

5. SIZE OF THE LARGEST CLUSTER AT A FIXED TIME t

We focus now on the system at a given time t ¥ ] 0, 1[. It is of interest
to estimate the size Ln(t) of the largest cluster at time t. The following
theorem ensures that Ln(t) £ log n.
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Theorem 5.1. For any t ¥ ] 0, 1[, there exists two constants 0 < Ct

[ C −t <. such that

lim
nQ.

P(Ct log n [ Ln(t) [ C −t log n)=1.

This result implies in particular, that the first macroscopic cluster (i.e.,
cluster of size £ n) appears at a time which tends to the critical time 1,
when n tends to infinity (see Theorem 3.1). A referee raised the question of
describing the evolution of the gas at times closed to the critical time. This
interesting problem remains open.

Proof of Theorem 5.1. We give in a first time an upper bound to
the size Ln(t) of the largest cluster. According to condition (6) a necessary
condition for the existence of a cluster of size k at time t is

,k [ p [ 2k and i ¥ {0,..., n−p} such that for r=1,..., p−1,

1
r
C
r

j=1
Xn:i+j −

1
p−r

C
p

j=r+1
Xn:i+j+

pt2

2n
\ 0,

which may be written

,k [ p [ 2k and i ¥ {0,..., n−p} such that for r=1,..., p−1,

1
p−r

C
p

j=r+1

1Xn:i+j −Xn:i −
j
n
2−1

r
C
r

j=1

1Xn:i+j −Xn:i −
j
n
2 [ p

t2−1
2n

.

We shall deal with the quantity

dn(k)=max
1 [ j [ k

max
0 [ i [ n+1−j

:Xn:i+j −Xn:i −
j
n
:

which has been introduced by Mason (5) in order to describe the oscillation
modulus of the uniform quantile process vn. It follows from the inequality

1
p−r

C
p

j=r+1

1Xn:i+j −Xn:i −
j
n
2−1

r
C
r

j=1

1Xn:i+j −Xn:i −
j
n
2 [ 2dn(p),

that when the condition

2dn(2k) <
k
n
11−t2

2
2
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holds, no cluster of size larger than k can exist. When kn ’ c log n with
c > 0, Mason has shown (see Theorem 2(II’) in ref. 5) that

ndn(kn)
kn

||QnQ.
a+c −1 a.s.,

where a+c is the unique solution larger than 1 of a+c − log a+c −1=1/c.
Since a+c Q 1 when c Q., there exists C −t <. such that

4(a+2CŒt −1) <
1−t2

2
,

so for n large enough

2dn(2kn) <
kn

n
11−t2

2
2 a.s. ,

and there exists a.s. no cluster of size larger than C −t log n.
We now give a lower bound to the size of the largest cluster at time t.

Recall from (5) that a sufficient condition for the existence of a cluster of
size larger than k at time t is

,i ¥ {0,..., n−k} such that Xn:i+1 −Xn:i+k+
kt2

2n
\ 0,

which leads us to consider

D−
n (k) := min

0 [ i [ n−k
(Xn:i+k −Xn:i+1).

A sufficient condition for the existence of a cluster of size at least k in
terms of D−

n (k) is thus

D−
n (k) [

kt2

2n
. (11)

The analog to formula (15) in ref. 5 (see also Theorem 2(12) in ref. 8) for
D−

n (k) is when kn ’ c log n

nD−
n (kn)
kn

’
nQ.

a−
c a.s.,
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where a−
c is the unique solution less than 1 of a−

c − log a−
c −1=1/c. Since

a−
c Q 0 when c Q 0, there exists a constant Ct such that a

−
Ct

< t2/2, and for
n large enough

D−
n (kn) [

knt2

2n
a.s.

Combining this with formula (11) one obtains for n large enough the a.s.
existence of a cluster of size larger than Ct log n, which completes the proof
of Theorem 5.1.

6. EVOLUTION OF A MARKED PARTICLE

We should like to estimate the typical size of a cluster. In this direc-
tion, we study the size of the cluster which contains a marked particle, say
for example the particle number [n/2] ([ · ] denotes the integer part func-
tion). The reason we choose a particle ‘‘in the middle’’ is that we want to
avoid the side effects. The following theorem claims that particle in=[n/2]
does not collide with the others at infinitesimal times and belongs to a
finite cluster at any time t ¥ ] 0, 1[.

Theorem 6.1. Let Sn(t) denotes the size of the cluster which con-
tains particle in=[n/2] at time t.

(i) If tn is a sequence of times decreasing to 0, then

P(Sn(tn)=1) ||QnQ. 1.

(ii) If kn is sequence of integer increasing to . and t ¥ ] 0, 1[, then

P(Sn(t) \ kn) ||QnQ. 0.

Proof of Theorem 6.1. According to condition (3), a necessary
condition for the merging of (i+1,..., i+k) into a cluster of size k before
time t is

Xn:i+1 −Xn:i+k+
kt2

n
\ 0.

In particular, a necessary condition for Sn(t) to be larger than k is

,k [ p [ n, and 0 [ j [ p−1, such that Xn:in −j −Xn:in −j+p−1+
pt2

n
\ 0.
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Recall that

(Xn:i; i=1,..., n) ’
law 1e1+·· ·+ei

Cn+1
; i=1,..., n2 ,

where (ei; i=1,..., n+1) are independent random variables with exponen-
tial law of parameter 1 and Cn+1=e1+·· ·+en+1. We can give an upper
bound to P(Sn(t) \ k) in terms of ei: for any m > 1

P(Sn(t) \ k) [ P 10
n

p=k
0
p−1

j=0

3Xn:in −j −Xn:in −j+p−1+
pt2

n
\ 042

[ P 1Cn+1

n
\ m2+ C

n

p=k
p P(e1+·· ·+ep−1 [ mpt2).

The Cramer’s large deviation inequality (see ref. 2) yields

P 1e1+·· ·+ep

p
[ l2 [ exp(−pLg(l)),

with

Lg(l)=sup
s [ 0

(ls−L(s))=l−1− log l.

We thus obtain the upper bound for m such that k
k−1 mt

2 < 1:

P(Sn(t) \ k) [ P 1Cn+1

n
\ m2+ C

n

p=k
p exp 1 −(p−1) Lg 1 p

p−1
mt222 . (12)

We first focus on the case tn ||QnQ. 0. Under the assumption that t2n < 1/4
formula (12) gives for k=2 and m=2

P(Sn(tn) \ 2) [ P 1Cn+1

n
\ 22+ C

n

p=2
p exp 1 −(p−1) Lg1 p

p−1
2t2n 22

[ P 1Cn+1

n
\ 22+ C

n

p=2
exp (log p−(p−1) Lg(4t2n)).

Let us consider the exponential term. Expanding Lg, we obtain

log p−(p−1) Lg(4t2n)=log p−(p−1)(4t2n −1−2 log(2tn))

[ log p+(p−1) log(2tn)+(p−1)(1+log(2tn)) .
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As soon as tn [ 1/4, the term log p+(p−1) log(2tn) is negative for any
p \ 2, so we have the upper bound

P(Sn(tn) \ 2) [ P 1Cn+1

n
\ 22+ C

n

p=2
exp((p−1)(1+log(2tn))

[ P 1Cn+1

n
\ 22+ exp(1+log(2tn))

1− exp(1+log(2tn))
.

A consequence of the previous inequality is that P(Sn(tn) \ 2) tends to 0
when n tends to infinity. The first part of Theorem 6.1 is proved.

We now focus on the case t ¥ ] 0, 1[ and kn is an increasing sequence
of integer. Formula (12) may be written in this case as

P(Sn(t) \ kn) [ P 1Cn+1

n
\ m2+ C

n

p=kn

p exp 1 −(p−1) Lg 1 kn

kn −1
mt222 .

Since t < 1, we can choose m > 1 such that mt2 < 1 and then for n large
enough kn

kn −1 mt
2 [ d < 1. Under these assumptions we obtain

P(Sn(t) \ kn) [ P 1Cn+1

n
\ m2+ C

n

p=kn

p exp (−(p−1) Lg(d)),

with Lg(d) > 0. It follows that P(Sn(t) \ kn) tends to 0 when n tends to
infinity. This conclude the proof of Theorem 6.1.

7. CONCLUDING REMARKS

We would like to emphasize the difference of behaviour between the
system considered in the present paper, and the Gaussian one studied by
Martin et al. (1, 4) The major difference is the scarcity of collisions in our case
compared to the Gaussian case, due to the static initial condition of the
gas. Computer numerical simulations lead Bonvin and al. to conjecture the
existence in the Gaussian case of £`n aggregates of size £`n at fixed
time t < tg, whereas we have seen that in our case a typical cluster is of
finite size at time t < tg=1, and has in any case a size bounded by C −t log n.
The proliferation of collisions in the Gaussian case is a consequence of the
existence of particles with high initial kinetic energy, which collect quickly
many neighboring particles. We must underline at this point that in the
case we consider, the scarcity of collisions is a characteristic phenomenon
that explains as well the appearance of clusters of size k before those of size
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k+1, as the somewhat small size of the largest cluster at time t < 1. It is
also to be noticed that the last collision occurs in different ways in the two
cases. In the Gaussian one the time of last collision do not converge to the
characteristic time tg (see formula (37) in ref. 4) and the last collision
involves a macroscopic together with a microscopic cluster (see ref. 4,
Section 6 and also ref. 1, Section 3(ii)). This phenomenon results again
from the existence of particles with high kinetic energy. Some of them are
near the sides and they flee far away from the system at small times. We
shall conclude with an interesting comment made by a referee. There is a
qualitative gap between the evolution of the system starting at zero tem-
perature2 and the evolution starting at low temperature. Indeed, as soon as

2 The zero temperature relies to the static initial state of the gas, which gets of course heated
as time runs by the conversion of potential energy into kinetic energy. It will then cool down
again by dissipative collisions.

the temperature of the initial particles is not strictly zero, the gas follows
the behaviour described in refs. 1 and 4.
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